• Menu
  • Skip to right header navigation
  • Skip to primary navigation
  • Skip to secondary navigation
  • Skip to main content
  • Skip to primary sidebar

banner logo

University of California, Berkeley Mechanical Engineering

MENUMENU
  • Prospective Students
  • Industry
  • Contact us
  • Give Now
  • About
    • From the Chair
    • Honors and Rankings
    • Visitor Information
    • Equity and Inclusion
    • 150 Years of Women in ME
    • Make a Gift
    • Contact us
  • People
    • Faculty
      • Faculty by Research Area
      • Faculty Books
    • Staff
      • Administrative
      • Facilities
      • Financial
      • Information Technology
      • Student Services
      • Student Machine Shops
    • Community Spotlight
    • External Advisory Board
    • Open Positions
      • Lecturer Positions
    • Visiting Scholars
  • Undergraduate
    • Curriculum Flowchart
    • Degree Requirements
    • ME + Business
    • ME/MSE Joint Major
    • ME/NE Joint Major
    • Aerospace Engineering Minor
    • ME Minor
    • Fifth Year B.S./M.S. Program
    • Simultaneous Degrees
    • Advising
      • Semesterly Advising
      • Faculty Adviser Assignments
      • Faculty Office Hours
      • Forms
      • Career Planning Maps
    • Admissions
      • Applying to Engineering
      • The Application
      • Junior Transfers
      • Credit from Exams
      • Financial Resources
      • Drake Scholarship
      • Visit Us
    • ME Courses
      • Tentative ME Course Schedule
      • Technical Electives
      • Design Electives
        • Design Course Transition
      • Quantitative Science
      • Humanities & Social Sciences Courses
      • Undergrad Course Syllabi
      • ME DeCal Courses
    • Undergraduate Research
      • Credit for Research
      • Research Samples
    • Awards and Scholarships
      • Past Prize Winners
    • Student Academic Resources
      • Student Life Resources
    • Jobs and Internships
    • Program Objectives and Outcomes (ABET)
  • Graduate Programs
    • Ph.D. & D.Eng.
    • Master of Science
    • Master of Engineering
    • Fifth Year B.S./M.S. Program
      • Degree Requirements
      • 5th Year Masters Program Handbook
    • Special Programs
    • Admissions
      • M.S., Ph.D., D.Eng. & CWO Application
      • MEng Application
      • 5th Year Masters Admissions
      • Application Tips
      • Fees and Financial Support
      • Readmission / Change of Major
    • Graduate Resources
      • Graduate Handbook
      • Graduate Forms
      • Prelim Exams
      • Research Areas and Major Fields
      • Major Field Advisors
      • Grant Writing
      • Grad Division Resources
      • MEGSCo
      • COE Graduate Guide
    • GSI/Reader Information
      • GSI/Reader Forms
    • Course Information
      • Tentative ME course schedule
    • Graduate Course Syllabi
  • Research
    • Research Areas and Major Fields
    • Faculty by Research Area
    • Laboratories
    • Research Centers
  • Resources
    • Student Academic Resources
    • Graduate Resources
    • Student Life Resources
      • ME Student Groups
    • Virtual Career Panel Series
    • Equity and Inclusion
    • Jobs and Internships
    • Room Reservations
    • Safety Information
    • Key Requests
    • Sexual Violence & Sexual Harassment Prevention
    • Mail & Office Administration
    • Faculty & Staff Resources
    • Financial Services
  • IT Services
  • ME Shops
    • Shop Training
    • Services Provided
    • Shop Equipment
    • Student Electronics Shop
    • Shop Safety
  • News
    • Alumni Newsletter
    • Mechanical Engineering Seminars
    • Events
    • Videos
MENUMENU
  • About
    • From the Chair
    • Honors and Rankings
    • Visitor Information
    • Equity and Inclusion
    • 150 Years of Women in ME
    • Make a Gift
    • Contact us
  • People
    • Faculty
      • Faculty by Research Area
      • Faculty Books
    • Staff
      • Administrative
      • Facilities
      • Financial
      • Information Technology
      • Student Services
      • Student Machine Shops
    • Community Spotlight
    • External Advisory Board
    • Open Positions
      • Lecturer Positions
    • Visiting Scholars
  • Undergraduate
    • Curriculum Flowchart
    • Degree Requirements
    • ME + Business
    • ME/MSE Joint Major
    • ME/NE Joint Major
    • Aerospace Engineering Minor
    • ME Minor
    • Fifth Year B.S./M.S. Program
    • Simultaneous Degrees
    • Advising
      • Semesterly Advising
      • Faculty Adviser Assignments
      • Faculty Office Hours
      • Forms
      • Career Planning Maps
    • Admissions
      • Applying to Engineering
      • The Application
      • Junior Transfers
      • Credit from Exams
      • Financial Resources
      • Drake Scholarship
      • Visit Us
    • ME Courses
      • Tentative ME Course Schedule
      • Technical Electives
      • Design Electives
        • Design Course Transition
      • Quantitative Science
      • Humanities & Social Sciences Courses
      • Undergrad Course Syllabi
      • ME DeCal Courses
    • Undergraduate Research
      • Credit for Research
      • Research Samples
    • Awards and Scholarships
      • Past Prize Winners
    • Student Academic Resources
      • Student Life Resources
    • Jobs and Internships
    • Program Objectives and Outcomes (ABET)
  • Graduate Programs
    • Ph.D. & D.Eng.
    • Master of Science
    • Master of Engineering
    • Fifth Year B.S./M.S. Program
      • Degree Requirements
      • 5th Year Masters Program Handbook
    • Special Programs
    • Admissions
      • M.S., Ph.D., D.Eng. & CWO Application
      • MEng Application
      • 5th Year Masters Admissions
      • Application Tips
      • Fees and Financial Support
      • Readmission / Change of Major
    • Graduate Resources
      • Graduate Handbook
      • Graduate Forms
      • Prelim Exams
      • Research Areas and Major Fields
      • Major Field Advisors
      • Grant Writing
      • Grad Division Resources
      • MEGSCo
      • COE Graduate Guide
    • GSI/Reader Information
      • GSI/Reader Forms
    • Course Information
      • Tentative ME course schedule
    • Graduate Course Syllabi
  • Research
    • Research Areas and Major Fields
    • Faculty by Research Area
    • Laboratories
    • Research Centers
  • Resources
    • Student Academic Resources
    • Graduate Resources
    • Student Life Resources
      • ME Student Groups
    • Virtual Career Panel Series
    • Equity and Inclusion
    • Jobs and Internships
    • Room Reservations
    • Safety Information
    • Key Requests
    • Sexual Violence & Sexual Harassment Prevention
    • Mail & Office Administration
    • Faculty & Staff Resources
    • Financial Services
  • IT Services
  • ME Shops
    • Shop Training
    • Services Provided
    • Shop Equipment
    • Student Electronics Shop
    • Shop Safety
  • News
    • Alumni Newsletter
    • Mechanical Engineering Seminars
    • Events
    • Videos
ME banner

ME Graduate Student Chengzhi Shi & ME Professor Xiang Zhang Work to Bring High-Speed Communications to the Deep Sea

You are here: Home / News / ME Graduate Student Chengzhi Shi & ME Professor Xiang Zhang Work to Bring High-Speed Communications to the Deep Sea

Photo Credit: Merilyn Chung/Berkeley Lab

Could This Strategy Bring High-Speed Communications to the Deep Sea?

Originally published by the Berkeley Lab News Center on June 27, 2017

by Sarah Yang 510 486-4575

A new approach to&nbspsending acoustic waves through water could potentially open up the world of high-speed communications to activities underwater, including scuba diving, remote ocean monitoring, and deep-sea exploration.

By taking advantage of the dynamic rotation generated as acoustic waves travel, or the orbital angular momentum, researchers at the Department of Energy’s Lawrence Berkeley National Laboratory Berkeley Lab were able to pack more channels onto a single frequency, effectively increasing the amount of information capable of being transmitted.

They demonstrated this by encoding in binary form the letters that make up the word “Berkeley,” and transmitting the information along an acoustic signal that would normally carry less data. They describe their findings in a study published this week in the&nbspProceedings of the National Academy of Sciences.

“It’s comparable to going from a single-lane side road to a multi-lane highway,” said study corresponding author Xiang Zhang, senior faculty scientist at Berkeley Lab’s Materials Sciences Division and a professor at UC Berkeley. “This work has huge potential in high-speed acoustic communications.”

While human activity below the surface of the sea increases, the ability to communicate underwater has not kept pace, limited in large part by physics. Microwaves are quickly absorbed in water, so transmissions cannot get far. Optical communication is no better since light gets scattered by underwater microparticles when traveling over long distances.

Low frequency acoustics is the option that remains for long-range underwater communication. Applications for sonar abound, including navigation, seafloor mapping, fishing, offshore oil surveying, and vessel detection.

However, the tradeoff with acoustic communication, particularly with distances of 200 meters or more, is that the available bandwidth is limited to a frequency range within 20 kilohertz. Frequency that low limits the rate of data transmission to tens of kilobits per second, a speed that harkens back to the days of dialup internet connections and 56-kilobit-per-second modems, the researchers said.

“The way we communicate underwater is still quite primitive,” said Zhang. “There’s a huge appetite for a better solution to this.”

The researchers adopted the idea of multiplexing, or combining different channels together over a shared signal. It is a technique widely used in telecommunications and computer networks, but multiplexing orbital angular momentum is an approach that had not been applied to acoustics until this study, the researchers said.

As sound propagates, the acoustic wavefront forms a helical pattern, or vortex beam. The orbital angular momentum of this wave provides a spatial degree of freedom and independent channels upon which the researchers could encode data.

“The rotation occurs at different speeds for channels with different orbital angular momenta, even while the frequency of the wave itself stays the same, making these channels independent of each other,” said study co-lead author Chengzhi Shi, a graduate student in Zhang’s lab. “That is why we could encode different bits of data in the same acoustic beam or pulse. We then used algorithms to decode the information from the different channels because they’re independent of each other.”

The experimental setup, located at Berkeley Lab, consisted of a digital control circuit with an array of 64 transducers, together generating helical wavefronts to form different channels. The signals were sent out simultaneously via independent channels of the orbital angular momentum. They used a frequency of 16 kilohertz, which is within the range currently used in sonar. A receiver array with 32 sensors measured the acoustic waves, and algorithms were used to decode the different patterns.

“We modulated the amplitude and phase of each transducer to form different patterns and to generate different channels on the orbital angular momentum,” said Shi. “For our experiment we used eight channels, so instead of sending just 1 bit of data, we can send 8 bits simultaneously. In theory, however, the number of channels provided by orbital angular momentum can be much larger.”

The researchers noted that while the experiment was done in air, the physics of the acoustic waves is very similar for water and air at this frequency range.

Expanding the capacity of underwater communications could open up new avenues for exploration, the researchers said. This added capacity could eventually make the difference between sending a text-only message and transmitting a high-definition feature film from below the ocean’s surface. Remote probes in the oceans could send data without the need to surface.

“We know much more about space and our universe than we do about our oceans,” said Shi. “The reason we know so little is because we don’t have the probes to easily study the deep sea. This work could dramatically speed up our research and exploration of the oceans.”

The other researchers on this team are co-lead author Marc Dubois and co-author Yuan Wang, both members of Zhang’s group.

This research is supported by the UC Berkeley Ernest Kuh Chair Endowment, a UC Berkeley Graduate Student Fellowship, and the Gordon and Betty Moore Foundation.

###

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Previous Post: « ME Adjunct Professor David Horsley & EECS Professor Bernhard E. Boser Awarded NSF/IUCRC Alexander Schwarzkopf Prize
Next Post: CalSol Comes in First Place at Formula Sun Grand Prix »

Primary Sidebar

  • News
  • Alumni Newsletter
  • Mechanical Engineering Seminars
  • Events Calendar
  • Videos

Upcoming Events

    No events listed.

  • Contact
  • Accessibility
  • Privacy
  • Nondiscrimination
  • UC Berkeley
  • Berkeley Engineering
  • Facebook
  • Twitter
  • YouTube

Copyright © 2023 UC Berkeley Mechanical Engineering · All Rights Reserved ·