University Of California, Berkeley Department of Mechanical Engineering

ME C210 /Bio Eng C209: Advanced Orthopedic Biomechanics (4 units)

Graduate Course

Syllabus

CATALOG DESCRIPTION

Students will learn the application of engineering concepts including statics, dynamics, optimization theory, composite beam theory, beam-on-elastic foundation theory, Hertz contact theory and materials behavior. Topics will include forces and moments acting on human joints; composition and mechanical behavior of orthopedic biomaterials; design/analysis of artificial joint, spine, and fracture fixation prostheses; musculoskeletal tissues including bone, cartilage, tendon, ligament, and muscle; osteoporosis and fracture-risk predication of bones; and bone adaptation. Students will be challenged in a MATLAB-based project to integrate the course material in an attempt to gain insight into contemporary design/analysis/problems. Also listed as Bioengineering C209.

COURSE PREREQUISITES

ME C85/CE C30 or Bio Eng 102; concurrent enrollment OK. Proficiency in MatLab or equivalent. Prior knowledge of biology or anatomy is not assumed.

TEXTBOOK(S) AND/OR OTHER REQUIRED MATERIAL

Bartel DL, Davy DT, and Keaveny TM: "Orthopaedic Biomechanics: Mechanics and Design in Musculoskeletal Systems" Pearson Prentice Hall, New Jersey, 2006.

COURSE OBJECTIVES

The purpose of this course is twofold:

- to learn the fundamental concepts of orthopaedic biomechanics;
- to enhance skills in mechanical engineering and bioengineering by analyzing the mechanical behavior of various complex biomedical problems.

DESIRED COURSE OUTCOMES

Working knowledge of various engineering concepts such as composite beam theory, beam-on-elasticfoundation theory, Hertz contact theory and MATLAB-based optimization design analysis. Understanding of basic concepts in orthopaedic biomechanics and the ability to apply the appropriate engineering concepts to solve realistic biomechanical problems, knowing clearly the assumptions involved.

TOPICS COVERED

Basic anatomy, Static analysis of skeletal systems, Kinematics and dynamics, Viscoelasticity, Tissue Mechanics, Muscle Mechanics, Composite beam theory, Whole Bone Structural Analysis, Mechanics of aging, disease, drug treatment; Implant Design: Orthopaedic implant materials, Design objectives of orthopaedic

prostheses, Design of hip prostheses, Beam-on-elastic-foundation theory, Contact stresses and wear, Design of knee prostheses, Fracture fixation and spinal implants, Bone adaptation and implant design.

CLASS/LABORATORY SCHEDULE

Three hours lecture, one hour discussion and computer workshop.

CONTRIBUTION OF THE COURSE TO MEETING THE PROFESSIONAL COMPONENT

Emphasis on interpretation of results from analytical and computational models, in light of economic, ethical and safety issues provides students with substantial professional component. Students are also required to write professional-type short reports summarizing their computational analyses.

ASSESSMENT OF STUDENT PROGRESS TOWARD COURSE OBJECTIVES

The students' progress is assessed via Weekly homework, three Matlab assignments which involves computer programming, one Mid-term exam and a Final exam 40%

Literature Review paper 5% Weekly homeworks and assignments 10% Matlab assignments (2 mini + final project) 25% (2.5+7.5+20.0) Mid-term exam 20% Final exam 40%

TOPICS COVERED/WEEKLY AGENDA

Please see attached.

ROOM SHARE AND GRADUATE CONTENT

In the graduate level version of Orthopaedic Biomechanics, graduate students will review current work in the literature that applies the principles and techniques described in class. There will be a separate discussion section for the graduate students to discuss these papers. Also, these sessions will provide the students with a broad understanding of the cutting edge research being performed in this area. By the end of the semester, it is expected that the students will not only be able to read and understand the literature, but will be able to critically assess the limitations, strengths and weaknesses in a study.

A second major component difference between the undergraduate and graduate level course work will be a written assignment with an oral presentation. The graduate students will be expected to provide an oral presentation to the class (groups of 3). Students will describe an anatomical feature and a condition or disease associated with the feature. In addition, the group will be required to write a short summary report of the anatomical region with the focus of expressing to a lay reader why it is important to know about the feature/condition, what's being done research-wise or clinically, and what future treatments may be coming. It is expected that this assignment will allow them to apply the critical thinking skills learned during the discussion sections, described above. The purpose of this assignment is not for the students to feel like they need to solve these big issues in one assignment, but more to focus on communicating these ideas to people that may not know the topic area (i.e. general public or other engineers).

PERSON(S) WHO PREPARED THIS DESCRIPTION

Professor Grace O'Connell, September 25, 2013

ABBREVIATED TRANSCRIPT TITLE (19 SPACES MAXIMUM): ADV ORTHO BIO MECH TIE CODE: LECS GRADING: Letter SEMESTER OFFERED: Fall and Spring COURSES THAT WILL RESTRICT CREDIT: ME C176 and BIO E C119, no credit INSTRUCTORS: Keaveny and O'Connell DURATION OF COURSE: 14 Weeks EST. TOTAL NUMBER OF REQUIRED HRS OF STUDENT WORK PER WEEK: 12 IS COURSE REPEATABLE FOR CREDIT? No. CROSSLIST: Bio Eng C209

ME C21x, BIOE C2xx

DATE	LECTURE TOPIC	MATLAB PROJECTS	R EADING*
<i>Skeletal Forces</i> Sept. 2 Sept. 4	and Motion LABOR DAY HOLIDAY Introduction; basic anatomy		2-21
Sept. 9 Sept. 11	Static analysis of skeletal systems I Static analysis of skeletal systems II		23–35
Sept. 16 Sept. 18	The force distribution problem Kinematics and dynamics I		35–44 44–58
Sept. 23 Sept. 25	Kinematics and dynamics II Joint stability	MINI MATLAB 1 (due 10/09)	64–65 58–64
<i>Tissue Mechan</i> Sept. 30 Oct. 2	<i>ics and Materials</i> Impact biomechanics Viscoelasticity		154–163
Oct. 7 Oct. 9	Tissue mechanics I Tissue mechanics II		71–116 121–147
Oct. 14 Oct. 16	Muscle mechanics MID-TERM EXAM (all course material through Oct 2;	closed-book)	147–153; 163–164
Oct. 21 Oct. 23	Composite beam theory (Symmetric beams) Composite beam theory (Unsymmetrical beams)	MINI MATLAB 2 (due 11/06)	168–176 177–182
Oct. 28 Oct. 30	Case studies: whole bone mechanics Orthopaedic implant materials		183–198 235–245
Implant Design Nov. 4 Nov. 6	<i>and Analysis</i> Design principles, objectives, and constraints Beam-on-elastic-foundation theory I		245–25 203–213
Nov. 11 Nov. 13	VETERAN'S DAY HOLIDAY Beam-on-elastic-foundation theory II		304–310
Nov. 18 Nov. 20	Contact stresses Design of knee prostheses	FINAL PROJECT PART A (due 12/2) Review Paper Due	223–231; 335–349 314–332
Nov. 25 Nov. 27	Design of hip prostheses Design of spine prostheses	FINAL PROJECT PART B (due 12/05)	290–304; 310
Dec. 2 Dec. 4	Design of fracture fixation prostheses Course summary, closure		261–287
Dec. 9 Dec. 11	Reading, Review, and Recitation Reading, Review, and Recitation		

Dec. 19 FINAL EXAM, 8:00-11:00 AM, Location TBA (all course material; closed-book)

* Reading assignments refer to the course textbook; please try to do reading before class.

All homeworks and projects are to be uploaded on bspace, by 2 pm of the assigned day. Solutions to the homeworks will be posted on bspace by 6 pm of that day. Late homeworks or projects will not be accepted without prior approval from Professor O'Connell. The topic of the Final Project is the same for all students.

Grading:	Literature Review paper Weekly homeworks and assignments Matlab assignments (2 mini + final project) Mid-term exam Final exam	5% 10% 25% (2.5+7.5+20.0) 20% 40%
	Final exam	40%

		Graduate Discussion (all discussions are based on a critical review	/iew Assignments/ Mini
	Lecture topics	and analysis of 1-2 papers from the literature)	Projects
Week 1	Introduction; Basic anatomy	early biomechanics studies - gait analysis	
		biomechanical studies using statics to understand mechanical function	
Week 2	Static analysis of skeletal system	of joint loads (cartilage and intervertebral disc)	
Week 3	Force distribution problem; Dynamics		
Week 4	Dunomico III. Joint Stability	Studies that look at the effect of muscle forces on the stability of the	
vveek 4		Joint function (knee and spine)	
Week 5	Impact biomechanics; Viscoelasticity	fractures	Matlab Project 1
Week 6	Tissue Mechanics	Visocelastic studies on tendons and ligaments	
Week 7	Muscle Mechanics/ Midterm	studies that measure muscle activity and forces during daily activity	
Week 8	Composite Beam Theory	Repair strategies for fracture of long bones with critical defects	
Week 9	Design Principles, objectives and constraints	Studies that look at wear properties of biomaterials used for protheses	Matlab Project 2
Week 10	Beam-on-elastic foundation Theory	Kree prostheses - early studies of efficacy and effect on pain reduction	
Week 11	Contact stresses; Design of Knee Prostheses	Hip prostheses papers - Studies performed for FDA review and approval	Review Paper
Week 12	Design of hip and spine prostheses	Spine prostheses - studies that look at long term effect of prostheses and effect on other neighboring tissues	
	Designe of fracture fixation prosthesis;		
Week 13	course summary	Studies that look at failure of prostheses	Matlab Project 3- part 1
Week 14	Reading, review, and receitation	no discussion	Matlab Project 3-part 2
Week 15	Final Exam		

Grading

Literature Review paper	5%
Weekely Homeworks	10%
Matllab Assignments	25%
Mid-term exam	20%
Final exam	40%