Our research spans the invention, modeling and simulation of micro- and nano-scale manufacturing processes. We are particularly focused on processes that can be used to fabricate extremely rich and complex, multi-scale geometries, such as are found in semiconductor integrated circuits and biological tissues. Recent work includes the introduction of the tomographic volumetric additive manufacturing process, …
Research Interest
Gu Research Group
The Gu Research Group works at the intersection of mechanics, additive manufacturing, materials, and computer science. We aim to make additive manufacturing more accessible, economical, and ubiquitous. Using a bioinspired algorithmic-driven design approach, we harness tools such as advanced computational analysis, machine learning, and topology optimization to expand and revolutionize the field of smart additive manufacturing …
Computational Manufacturing and Materials Research Laboratory
Research themes: (1) Modeling and simulation of advanced manufacturing and 3D printing systems; (2) Modeling and simulation of multiphase/composite material behavior; (3) Modeling and simulation of fire propagation and control with the Fire Research Group; (4) Modeling and simulation of UAVs and swarms; (5) Modeling and simulation of biological systems; (6) Modeling and simulation of ballistic …
Tarek I. Zohdi
Will C. Hall Family Chair in Engineering
Will C. Hall Endowed Chair
Chair of the UCB Computational & Data Science & Engineering Program
Professor of Mechanical Engineering
Associate Dean for Post Baccalaureate Programs, College of Engineering
University of California, Berkeley
Berkeley, CA 94720-1740
zohdi@berkeley.edu
(510) 642-9172
For more information see: Computational Manufacturing and Materials Research Lab
Fung Institute for Engineering Leadership
UCB Computational & Data Science & Engineering Program
Current Classes Taught
Click here for Professor Zohdi’s CV
Tarek I. Zohdi received his Ph.D. in 1997 in Computational and Applied Mathematics from the University of Texas at Austin. He was a post-doctoral fellow at the Technical University of Darmstadt in Germany from 1997 to 1998 and then a lecturer (C2-Oberingenieur) at the Gottfried Leibniz University of Hannover in Germany from 1998 to 2001, where he received his Habilitation in General Mechanics (Allgemeine Mechanik). Approximately one out of every twenty Ph.D holders in Germany is allowed to proceed with a Habilitation. It is the highest academic degree in Germany and is usually required to obtain the rank of full Professor there and in other parts of Europe. In July 2001, he became an Assistant Professor at the University of California, Berkeley, in the Department of Mechanical Engineering. He was promoted to Associate Professor in July 2004 and to Full Professor in July 2009. In July 2012, he was appointed Chair of the Designated Emphasis Program in Computational and Data Science and Engineering (DE-CSE) at UC Berkeley (https://citris-uc.org/initiatives/decse/) and from 2018-2020 the Chief Technology Officer UC Berkeley Fung Institute for Innovation https://funginstitute.berkeley.edu/about-us/our-people/staff/ and currently serves as Academic Director of the Sutardja Center for Entrepreneurship and Technology (SCET), UC Berkeley, https://scet.berkeley.edu/scet-names-tarek-zohdi-as-new-academic-director/. Since 2020, he is the Associate Dean for Post Baccalaureate Programs in the College of Engineering. Previously, he has served as the Chair of the College of Engineering Faculty (2018-2020), Chair of the Engineering Science Program at UC Berkeley (2008-2012) and Vice-Chair for Instruction in the Department of Mechanical Engineering (2009-2012). From 2014-2020, he was a Chancellors Professor of Mechanical Engineering. Since 2016, he is the holder of the W. C. Hall Family Endowed Chair in Engineering. He also holds a Staff Scientist position at Lawrence Berkeley National Labs and an Adjunct Scientist position at the Children’s Hospital Oakland Research Institute. His main research interests are in modeling, simulation and optimization of nonconvex multiscale-multiphysics problems for industrial applications. He has published over 180 archival refereed journal papers and eight books: (a) Introduction to computational micromechanics (T. Zohdi and P. Wriggers, Springer-Verlag), (b) An introduction to modeling and simulation of particulate flows (T. Zohdi, SIAM), (c) Electromagnetic properties of multiphase dielectrics: a primer on modeling, theory and computation (T. Zohdi, Springer- Verlag), (d) Dynamics of charged particulate systems: modeling, theory and computation (T. Zohdi, Springer-Verlag) (e) A finite element primer for beginners-the basics (T. Zohdi, Springer- Verlag), (f) Modeling and simulation of functionalized materials for additive manufacturing and 3D printing: continuous and discrete media (T. Zohdi, Springer-Verlag), (g) A finite element primer for beginners-extended version including sample tests and projects (T. Zohdi, Springer-Verlag) and (h) Modeling and simulation of infectious diseases: microscale transmission, decontamination and macroscale propagation (T. Zohdi, Springer-Verlag), as well as eight handbook/book chapters and five encyclopedia chapters. In 2000, he received the Zienkiewicz Prize and Medal, which are awarded once every two years, to one post-graduate researcher under the age of 35, by The Royal Institution of Civil Engineers in London, to commemorate the work of Professor O. C. Zienkiewicz, for research which contributes most to the field of numerical methods in engineering. In 2002, he received the Best Paper of the Year 2001 Award in London, at the Lord’s Cricket Grounds, for a paper published in Engineering Computations, pertaining to modeling and simulation of the propagation of failure in particulate aggregates of material. In 2003, he received the Junior Achievement Award of the American Academy of Mechanics. The award is given once a year, to one post-graduate researcher, to recognize outstanding research during the first decade of a professional career. In 2008, he was elected Fellow of the International Association for Computational Mechanics (IACM) and in 2009 he was elected Fellow of the United Stated Association for Computational Mechanics (USACM). The USACM is the primary computational mechanics organization in the United States and the International Association for Computational Mechanics is the primary international organization in this field. In 2011, he was selected as “Alumnus of the Year” by the Department of Mechanical Engineering at Louisiana State University (LSU), where he did his undergraduate studies. In 2017, he was awarded the University of California, Berkeley Distinguished Teaching Award. The Distinguished Teaching Award is a campus-wide recognition for faculty that have established a sustained and varied record of teaching excellence. This is the highest award for teaching in the University: http://teaching.berkeley.edu/node/240 https://www.youtube.com/watch?v=ntzkn71r2Sg. In 2019, he was selected to give a Lindbergh Lecture, by the University of Wisconsin in honor aviation pioneer (and engineer) Charles Lindbergh (a 1924 graduate of UW). In 2019 he was elected as Fellow of the American Academy of Mechanics (AAM)-only one new Fellow is inducted in the nation and the Americas into the AAM each year https://aamech.org/. In 2020, he received the prestigious Humboldt-Forschungspreis (Humboldt Research Prize). The prize, given by the Alexander von Humboldt Foundation of the German Government, recognizes renowned researchers outside of Germany whose “fundamental discoveries, new theories or insights have had a significant impact on their own discipline and who are expected to continue producing cutting-edge achievements in the future.” He received it in the area of Mechanics in recognition of lifetime achievements (see https://funginstitute.berkeley.edu/news/tarek-zohdi-receives-prestigious-humboldt-research-prize-in-the-area-of-mechanics/ and https://www.humboldt-foundation.de/web/humboldt-award.html and https://en.wikipedia.org/wiki/Humboldt_Prize).
He serves on the editorial advisory boards of ten international journals. Also, he is an editor of the leading journal Computational Mechanics and co-founder/co-editor-in-chief of journal, Computational Particle Mechanics, as well as an editor of the Computational Mechanics book series, published by John-Wiley. He has organized or co-organized over 30 international conferences and workshops and been appointed/invited to the Scientific Advisory Boards of over 40 international conferences. He was elected President of the USACM in 2012, and served from 2012 to 2014. Since 2009, he has served as a representative of the USACM on the General Council of the IACM, which is the governing committee of the primary international organization in his field of research and was elected to the Executive Council of IACM in 2020 (seven were elected worldwide in 2020). In 2014, he was appointed by the United States National Academy of Science (NAS) and the National Research Council (NRC) as a member of the US National Committee for Theoretical and Applied Mechanics (USNC/TAM) representing the USACM (4/15/2014-10/31/2018): https://www.nationalacademies.org/our-work/us-national-committee-for-theoretical-and-applied-mechanics-usnc-iutam. USNC/TAM is the primary national governing body for Mechanics in the United States. This committee operates under the auspices of the US Board on International Scientific Organizations (BISO) and the Policy and Global Affairs Division of the NRC. Furthermore, he is the national coordinator for the NAS and USNC/TAM for AmeriMech Symposia, which are intended to promote interactions among researchers in an area of contemporary interest in the mechanics of fluids and solids http://sites.nationalacademies.org/pga/biso/iutam/pga_086043. These symposia are designed to encourage participation of young researchers, and to promote interdisciplinary ideas and discussions. This format allows for in-depth discussions and close interactions between participants. Such symposia are renown to help assess the state-of-the-art and chart new directions for the future. In 2018, he was elevated/elected to Member-at-Large of the USNC/TAM by the National Academy of Sciences:http://www.me.berkeley.edu/about/news/me-professor-tarek-zohdi-appointed-member-large-us-national-academy-sciences-and-national. Overall, he has been a plenary speaker at each of the three major conferences in his field: (a) The World Congress for Computational Mechanics (Sao Paulo , 2012), (b) The United States National Congress for Computational Mechanics (Montreal, 2017) and (c) The International Conference on Particle-based Methods (Stuttgart 2013, Hannover, 2017) and given more than 200 other plenary, keynote and contributed lectures at conferences, universities and other research institutions worldwide. In addition to his academic credentials, Tarek I. Zohdi has been active in five main industrial areas:
- Modeling and simulation of high-strength fabric: Zohdi has worked extensively in the computational analysis of high-strength ballistic fabric shielding. Initially, this work was funded by the FAA and Boeing as part of a 10 year (2001-2011) multi-million dollar laboratory and simulation effort to develop ballistic fabric shields for the Boeing 787. The analysis of Zohdi was heavily involved in the development of 787 Boeing designs. The work was then applied to the development of new ballistic fabric shielding armor (from 2007-present) with the Army Research Labs (ARL) and the Army High Performance Computing Research Center (AHPCRC). In summary, the combined laboratory, modeling and simulation efforts have been instrumental for the development of new types of ballistic fabric shields for the safety and betterment of society.
- Modeling and simulation of highly heterogeneous materials: Zohdi has worked in the computational analysis of particulate functionalized materials in multiphysical regimes. This work has been continuously funded by a number of industries, most notably for power-generation materials in harsh environments such as thermal barrier turbine blade coating materials (CMCs: Ceramic Matrix Composites) and high-voltage electromagnetic generator (dielectric) materials, such as End Corona Protection systems. This work has been a direct industrial outgrowth of his ground-breaking book: Introduction to computational micromechanics (T. Zohdi and P. Wriggers, Springer-Verlag).
- Modeling and simulation of fire-technologies: In 2018, he founded the UC Berkeley Fire Research Group(FRG):
https://frg.berkeley.edu/ whose mission is to serve the best interests of the State of California and society at large, by working toward the development and implementation of more effective solutions for uncontrolled wildfires. The FRG’s mission is to develop, harness and integrate the state-of-the-art technologies across many fields in order to produce robust and affordable firefighting systems that are easy to maintain, upgrade and deploy for early detection and control of fires. The FRG brought together engineers, scientists, technologists, first responders and firefighters to bolster research in fire science, management and emergency control. - Modeling and simulation of food systems: In 2019, he founded the UC Berkeley Center for Next Generation Food Systems https://food-manufacturing.berkeley.edu/. The overall mission of the center is to optimize societal food production, quality, and food safety/security in the era of pandemics and beyond. These themes are central to California since its economy is the 5th largest economy in the world. The institute encourages cross-collaboration and sharing of information, where possible, and through various forums to further enhance expanding opportunities. Furthermore, the institute supports the research, education, extension, and economics endeavors designed to advance public knowledge and commercial interests. The center explores themes associated with (a) pandemic driven food system security and safety, (b) improving food yield, quality, and nutrition, (c) decreasing energy and water resource consumption, (d) increasing production yield and eliminating food waste, (e) large surface-area agriculture, using energy-efficient technologies such as solar and wind and the (f) use of autonomous systems, drones, sensors and machine-learning for detection of inefficiencies and hazards. The center is part of a 20,000,000 dollar multi-campus NSF-USDA-NIFA funded network. Zohdi is the PI of the UC Berkeley hub/node.
- Modeling and simulation of advanced manufacturing processes: Finally, he has been heavily involved in the National Network of Manufacturing Innovation (NNMI) system that has been developed over the last decade by the US Government. The goal is to add capacity to the National Network of Manufacturing Innovation, a 2014 initiative to increase the competitiveness of U.S. manufacturing by streamlining research and development and increasing collaboration among industry, academia, national labs and federal partners. In 2016, he was the Northern California Principal Investigator for the Northern California Clean Energy Smart Manufacturing Innovation Institute (CESMII); see Whitehouse announcement: https://engineering.berkeley.edu/news/2016/06/california-is-new-headquarters-for-smart-manufacturing-institute/
and https://me.berkeley.edu/news/president-obama-announces-winner-new-smart-manufacturing-innovation-institute-competition/ which is part of a 140,000,000 dollar consortium of universities, national labs and companies geared towards smart clean manufacturing (headquartered at UCLA). The mission of the consortium, consisting of 200 partners from 30 states representing a wide spectrum of interests across industry and academia, is to help hone advanced manufacturing’s competitive edge in the United States by increasing efficiency and accelerating the adoption of technologies such as advanced sensors, data analytics and digital controls in manufacturing. Also, in 2016, he was the California Principal Investigator for another successful consortium NNMI grant (the Advanced Robotics Manufacturing (ARM), headquartered at Carnegie Mellon) in which he was appointed the coordinator of the Northern California Branch; see announcements:
https://me.berkeley.edu/news/dod-announces-award-new-advanced-robotics-manufacturing-arm-innovation-hub/
and https://engineering.berkeley.edu/news/2017/01/berkeley-a-regional-center-in-new-robotics-manufacturing-consortium/ which is part of a 253,000,000 dollar consortium of universities, national labs and companies focused on advanced robotic manufacturing.
Public Service:
Pro bono as an engineering consultant for the ABC news on spontaneously shattering car sunroofs. Located here:
http://abc7.com/archive/8026317/
Pro bono as an engineering consultant for the ABC news on exploding shower doors made of tempered safety glass. Located here:
http://abc30.com/archive/9313662/
Pro bono as an engineering consultant for the ABC news on a faulty baby zipper device from a sleeping bag. Located here:
http://abc7news.com/archive/8433331/
Research Description:
Research themes:
(1) Modeling and simulation of advanced manufacturing and 3D printing systems
(2) Modeling and simulation of multiphase/composite material behavior
(3) Modeling and simulation of fire propagation and control with the Fire Research Group
(4) Modeling and simulation of UAVs and swarms
(5) Modeling and simulation of biological systems
(6) Modeling and simulation of ballistic fabric shielding
Methods of analysis:
(1) Discrete Element Methods
(2) Finite Element Methods
(3) Finite Difference Methods
(4) Computational Optics
(5) Machine-Learning Algorithms
(6) Agent-Based Methods
A set of “summary” slides on the above topics can be found here https://cmmrl.berkeley.edu/
Related papers and books on the above topics can be found here: https://cmmrl.berkeley.edu/zohdi-publications/
Related Links:
Fire Research Group: https://frg.berkeley.edu/ and http://www.dailycal.org/tag/fire-research-group/
Editor, Computational Mechanics: http://www.springer.com/materials/mechanics/journal/466
Editor-in-Chief, Comp. Particle Mechanics: http://www.springer.com/engineering/mechanics/journal/40571
NAS-USNC/TAM AmeriMech Coordinator: http://sites.nationalacademies.org/pga/biso/iutam/pga_086043
Chief Technology Officer, Fung Institute: https://funginstitute.berkeley.edu/about-us/our-people/staff/
Chair, UC Berkeley Computational Data Science and Eng. Prog: http://citris-uc.org/decse-organization/
Faculty Scientist, Lawrence Berkeley National Lab: http://www.lbl.gov/
Key Publications:
To view a list of Professor Zohdi’s publications, please visit the Computational Manufacturing and Materials Research Lab website.
Xiang Zhang
Professor of Mechanical Engineering
5130 Etcheverry HallUniversity of California, Berkeley
Berkeley, CA 94720-1740
xzhang@me.berkeley.edu
(510) 643-4978
For more information see: Zhang Lab
Current Classes Taught
Professor Xiang Zhang is the inaugural Ernest S. Kuh Endowed Chaired Professor at UC Berkeley and the Director of NSF Nano-scale Science and Engineering Center (NSEC). He is the Director of the Materials Sciences Division at Lawrence Berkeley National Laboratory (LBNL), as well as a member of the Kavli Energy Nano Science Institute.
Professor Zhang is an elected member of US National Academy of Engineering (NAE), Academia Sinica (National Academy in Republic of China), and Fellow of five scientific societies: APS (The American Physical Society), OSA (The Optical Society of America), AAAS (The American Association for the Advancement of Science), SPIE (The International Society of Optical Engineering), and ASME (The American Society of Mechanical Engineers).
Professor Zhang received Ph.D from UC Berkeley (1996) and MS from University of Minnesota and MS/BS from Nanjing University, PR China. He was an assistant professor at Pennsylvania State University (1996-1999), and associate professor and full professor at UCLA (1999-2004) prior to joining Berkeley faculty in 2004.
Professor Zhang’s current research focuses on nano-scale science and technology, materials physics, photonics and bio-technologies. He has published over 240 journal papers, including over 50 publications in Science, Nature series, PNAS and Physical Review Letters. He has given over 280 Keynote, Plenary and Invited talks at international conferences and institutions. He served as a Co-Chair of NSF Nanoscale Science and Engineering Annual Grantee Conferences in 2004 and 2005, Chair of Technical Program of IEEE 2nd International Conference on Micro and Nano Engineered and Molecular Systems in 2007, and current Chair of Academic Advisory Board for Research Center for Applied Science (RCAS), Academia Sinica, Taiwan, ROC.
In 2008, Professor Zhang’s research was selected by Time Magazine as one of the “Top Ten Scientific Discoveries of the Year” and “50 Best Inventions of the Year”, Discover Magazine’s “Top 100 Science Stories” in 2007, and R&D Magazine’s top 25 Most Innovative Products of 2006. His research has frequently been featured by international media including BBC, CNN, ABC, New York Times, and Wall Street Journal.
Professor Zhang is a recipient of the NSF CAREER Award (1997); SME Dell K. Allen Outstanding Young Manufacturing Engineer Award (1998) and ONR Young Investigator Award (1999). He was awarded the Chancellor’s Professorship by UC Berkeley (2004-2009), Distinguished Lecturer by University of Texas at Austin in 2004 and SEMETECH in 2005, respectively, Rohsenow Lecturer at MIT (2009) and William Reynolds Lecturer at Stanford (2012). In 2011, he was awarded Fred Kavli Distinguished Lectureship by Materials Research Society (MRS), Miller Professorship by UC Berkeley, and Distinguished Visiting Scientist (DVS) by the University of Toronto. In 2014, he was awarded the Fitzroy Medal for pioneering contribution in metamaterials and superlens.
Research Description:
Micro-nano scale engineering, novel 3D fabrication technologies in microelectronics and photonics, micro and nano-devices, nano-lithography and nano-instrumentation, rapid prototyping, bio-MEMS, and semiconductor manufacturing.
Key Publications:
To view a list of Professor Zhang’s publications, please visit the Zhang Lab website.
Kazuo Yamazaki
Professor Emeritus of Mechanical Engineering
University of California, Berkeley
Berkeley, CA 94720-1740
kyamazaki@berkeley.edu
(510) 642-3087
For more information see: Current Classes Taught
Education:
B.S. (1970), Keio University
M.S. (1972), Keio University
D. Eng. (1975), Keio University
Research Description:
Mechatronics, microprocess control of machines, CNC machine tool design and control, 3-D coordinate measurement and probing, CAD/CAM, sculptured surface machining, plastic injection molding, powder sintering, network based manufacturing automation integration.
Hayden Taylor
Associate Professor of Mechanical Engineering
6159 Etcheverry HallUniversity of California, Berkeley
Berkeley, CA 94720-1740
hkt@berkeley.edu
(510) 642-4901
For more information see: Design for Nanomanufacturing
Current Classes Taught
Hayden Taylor is an Assistant Professor in the Department of Mechanical Engineering at the University of California, Berkeley. He was previously an Assistant Professor at Nanyang Technological University in Singapore, a Postdoctoral Research Fellow in the Biosystems and Micromechanics group at the Singapore-MIT Alliance for Research and Technology, and a Research Associate in the Microsystems Technology Laboratories at MIT.
Hayden was born in Bristol, United Kingdom, in 1981. He attended Bristol Grammar School and Trinity College, Cambridge, receiving the B.A. and M.Eng. degrees in Electrical and Electronic Engineering in 2004. He was sponsored as an undergraduate by ST Microelectronics. He is a Senior Scholar of Trinity College, Cambridge, and received the Cambridge University Engineering Department’s Baker Prize in 2004. Hayden received the Ph.D. in Electrical Engineering and Computer Science from MIT in 2009, working with Professor Duane Boning.
Hayden is a member of the IEEE, the Institution of Engineering and Technology, and the Institute of Physics. He was an Institution of Electrical Engineers Jubilee Scholar 2000-4, and was a Kennedy Scholar for the academic year 2004-5.
To view Professor Taylor’s CV, please click here.
Research Description:
The invention, modeling and simulation of micro- and nano-manufacturing processes, materials-testing techniques operating down to the nanoscale, and applications of polymeric materials in micro- and nano-fabrication—including for tissue scaffold engineering.
Key Publications:
To view a list of Professor Taylor’s publications, please visit the Design for Nanomanufacturing website.
Sara McMains
Professor of Mechanical Engineering
5145 Etcheverry HallUniversity of California, Berkeley
Berkeley, CA 94720-1740
mcmains@me.berkeley.edu
(510) 852-9359
For more information see: McMains Home Page
Current Classes Taught
Dr. McMains is a professor in the Department of Mechanical Engineering, University of California, Berkeley. Her research interests include Geometric DFM (Design for Manufacturing) feedback, geometric solid modeling, CAD/CAM, GPU algorithms, computer aided process planning, layered manufacturing, computer graphics, visualization, virtual prototyping, and virtual reality. Her current research focuses on new techniques for accessibility analysis and collision detection, with applications in haptic design environments, design for manufacturing for injection molding, design for cleanability, layered manufacturing, and machining.
McMains received her A.B. from Harvard University in Computer Science, and her M.S. and Ph.D. from UC Berkeley in Computer Science with a minor in Mechanical Engineering. She is the recipient of Best Paper Awards from Usenix (1995) and ASME DETC (2000), a Best Poster and a Best Paper Award from the ACM Solid and Physical Modeling Symposium (2007, 2008 — 2nd place), and the NSF CAREER Award (2005).
Research Description:
Geometric and solid modeling, computer aided design, computer aided manufacturing, layered manufacturing, computer graphics and visualization, virtual prototyping, virtual reality.
Liwei Lin
James Marshall Wells Academic Chair in Mechanical Engineering
Professor of Mechanical Engineering
James Marshall Wells Academic Chair
Co-Director, Berkeley Sensor & Actuator Center
University of California, Berkeley
Berkeley, CA 94720-1740
lwlin@berkeley.edu
(510) 643-5495
For more information see: Lin Lab
Lin Home Page
Current Classes Taught
2006 – 2009 Vice Chair – Graduate Study, Mechanical Engineering Department, University of California at Berkeley
2004 Professor, Mechanical Engineering Department, University of California at Berkeley
2001 Associate Professor, Mechanical Engineering Department, University of California at Berkeley
1999 Assistant Professor, Mechanical Engineering Department, University of California at Berkeley
1996 Assistant Professor, Mechanical Engineering Department, University of Michigan
1994 Associate Professor, Institute of Applied Mechanics, National Taiwan University
1993 Senior Research Scientist, BEI Electronics Inc.
1993 PhD, Mechanical Engineering, University of California at Berkeley
1991 MS, Mechanical Engineering, University of California at Berkeley
1986 BS, Power Mechanical Engineering, National Tsing Hua University
Research Description:
MEMS (Microelectromechanical Systems); NEMS (Nanoelectromechanical Systems); Nanotechnology; design and manufacturing of microsensors and microactuators; development of micromachining processes by silicon surface/bulk micromachining; micromolding process; mechanical issues in MEMS including heat transfer, solid/fluid mechanics, and dynamics.
Key Publications:
For a list of Professor Lin’s publications, please click here.
Kyriakos Komvopoulos
Professor of Mechanical Engineering
5143 Etcheverry HallUniversity of California, Berkeley
Berkeley, CA 94720-1740
kyriakos@me.berkeley.edu
(510) 642-2563
For more information see: Current Classes Taught
Professor Komvopoulos has been in the faculty of the Department of Mechanical Engineering at the University of California, Berkeley (UCB) since 1989. Before joining UCB, he was in the faculty of the Department of Mechanical and Industrial Engineering at the University of Illinois at Urbana-Champaign (1986-1989). Professor Komvopoulos is internationally known for pioneering research in surface nanosciences and nanoengineering, with important implications in several emerging technologies including communications, microelectronics, information storage, and biotechnology. He is the founder and director of the Surface Mechanics and Tribology Laboratory (1989), which in 2008 was split into two laboratories, the Surface Sciences and Engineering Laboratory (SSEL) and the Computational Surface Mechanics Laboratory (CSML), to better accommodate his research programs in different interdisciplinary fields. Professor Komvopoulos holds the positions of Professor of Mechanical Engineering at UCB, Principal Investigator at the Center for Information Technology in the Interest of Society (CITRIS), and Faculty Scientist, Materials Sciences Division, Lawrence Berkeley National Laboratory (LBNL).
The research of Professor Komvopoulos is at the interfaces of mechanical and electrical engineering, materials sciences, surface physical chemistry, bioengineering, and biology. His work is characterized by a multidisciplinary nature and the combination of analytical and experimental techniques used to analyze complex surface and interface phenomena. His research is based on the integration of fundamentals from mechanics, materials, surface chemistry, and biology, and spans a broad range of scales, from the mesoscopic down to the atomic and molecular levels.
Early research accomplishments of Professor Komvopoulos include contact deformation at submicron scales, new friction theories of surfaces interacting in the presence of physicochemically adsorbed monolayers, surface plasticity and fracture of contacting bodies, acoustic emission in surface sliding and machining, synthesis and characterization of ultrathin diamondlike and amorphous carbon films, adhesion forces in miniaturized electromechanical systems, and rheological behavior of boundary films.
In the past two decades, Professor Komvopoulos broadened his research activities, branching into the exploration of various surface microprobe techniques for atomic and molecular level surface analysis, synthesis of self-assembled organic monolayers for reducing adhesion between silicon microdevices, invention of plasma-assisted surface treatments for biopolymers (used in total joint replacements, catheters for minimally invasive treatment of diseased arteries, and cell platforms), deposition of ultrathin (a few atomic layers) amorphous carbon films by sputtering and filtered cathodic vacuum arc for ultrahigh-density magnetic recording and heat-assisted magnetic recording, phase transformations and nanomechanical properties of shape-memory alloys (both in thin-film and bulk form) for retina disks and artery stents, a surface-specific spectroscopy technique (infrared-visible sum frequency generation (SFG) 2 vibrational spectroscopy) for in-situ studies of entropically driven molecular rearrangement at various biopolymer surfaces due to in-plane and out-of-plane stretching and aging effects. His most recent work includes plasma-assisted polymer surface functionalization for controlling adhesion and growth of cells, protein secretion due to mechanotransduction in articular cartilage, cell mechanics, patterned media for single-cell growth, and cell infiltration into fibrous scaffolds synthesized by electrospinning, new electrode materials for Lithium-ion batteries, flexible and stretchable bioelectronics, skin mechanics, and transdermal drug delivery by microneedle arrays, mechanics of biological surfaces, and synthesis of scaffolds with special cues for enhanced biofunctionality.
Professor Komvopoulos research is documented in 245 papers published in peer-reviewed archival journals, 70 papers in refereed conference proceedings, 19 papers in symposium proceedings, 65 technical reports, and 10 US patents. He has also authored an undergraduatelevel textbook (Mechanical Testing of Engineering Materials) and co-authored two monographs (Long Term Durability of Structural Materials: Durability 2000 and 1999 Interface Tribology Towards 100 Gbit/in2 ). He has given 217 scholarly presentations at international conferences, academic institutions, national laboratories, and various industries, supervised the research and dissertations of 55 graduate students (31 PhD and 24 MS) and 15 post-doctoral students, visiting faculty, and industry fellows, and consulted for a wide range of industries and law firms on various litigation matters. Professor Komvopoulos is Fellow of ASME, Fellow of STLE, and recipient of several awards, including NSF Presidential Young Investigator Award (1989-1996), IBM Faculty Development Award (1990-1992), Berkeley Engineering Fund Award (1989-1990), ASME B. L. Newkirk Award (1988), and NSF Engineering Initiation Award (1987).
At UCB, Professor Komvopoulos teaches undergraduate and graduate courses on Mechanical Behavior of Materials, Plasticity, Fracture, Fatigue, and Tribology, actively participates in the Nanosciences and Nanoengineering Graduate Program, and devotes significant time to administration duties at the Department, College, and University system-wide levels. His most recent system-wide committee service includes UC Faculty Welfare, Assembly Representative, Divisional Council, Educational Technology, Courses of Instruction, Graduate Study, and Committee on Academic Planning and Resource Allocation.
Research Description:
Surface nanoengineering methods, nano-/micro-mechanics and tribology, contact and fracture mechanics, mechanical behavior of bulk materials, deposition, microanalysis, and characterization of single and multi-layer thin films (RF sputtering, ion beam, and filtered cathodic vacuum arc), shape-memory alloys, reliability of nano-/micro-electromechanical systems (NEMS/MEMS), surface chemistry and nanoscale viscoelastic properties of (bio)polymers, surface treatments for total joint arthroplasty and catheters, surface force microscopy, particle contamination in semiconductor materials, damage of alternating phase-shift optical masks, laser-assisted surface nanomodification and nanostructuring, cell mechanics, plasma-assisted surface functionalization for controlling cell adhesion and proliferation, finite element analysis of thermomechanical surface contact interactions.
To learn more about Professor Komvopoulos’ research, please click here.
Key Publications:
To view a list of Professor Komvopoulos’ publications, please click here.
Homayoon Kazerooni
Professor of Mechanical Engineering
6147 Etcheverry HallUniversity of California, Berkeley
Berkeley, CA 94720-1740
kazerooni@berkeley.edu
(510) 642-2964
For more information see: Berkeley Robotics & Human Engineering Laboratory
Current Classes Taught
Dr. Kazerooni is a professor of Mechanical Engineering at the University of California, Berkeley, where he also serves as the director of the Berkeley Robotics and Human Engineering Laboratory. With more than 30 years of mechanical engineering experience and a doctorate degree from MIT, he is a leading expert in robotics, control sciences, exoskeletons, human-machine systems and augmentation, bioengineering, mechatronics design, intelligent assist devices, and power and propulsion. Prior to his more well-known research on lower extremity exoskeletons, Dr. Kazerooni led his team at Berkeley to successfully develop robotics systems that enhanced human upper extremity strength. The results of this work led to a new class of intelligent assist devices that are currently used by manual laborers in distribution centers and factories all over the world. These technologies are currently marketed worldwide by leading material handling corporations.
Dr. Kazerooni’s later work focuses on the control of human-machine systems specific to lower human extremities. After developing BLEEX, ExoHiker, and ExoClimber–three super-light, load-carrying exoskeletons–his team at Berkeley created HULC (Human Universal Load Carrier). It is the first energetically-autonomous, orthotic, lower extremity exoskeleton that allows its user to carry 200-pound weights in various terrains for an extended period, without becoming physically overwhelmed. The technology was licensed to Lockheed Martin and now is used for a variety of military applications. Dr. Kazerooni has also developed lower-extremity technology to aid persons who have experienced a stroke, spinal cord injuries, or health conditions that obligate them to use a wheelchair. His medical exoskeleton, Ekso, has successfully allowed those who have been paralyzed to walk, stand, and speak face to face with peers in an upright position.
In addition to his teaching work and research experience in a academia, Dr. Kazerooni is also an entrepreneur. In 2005, he founded Ekso Bionics (www.eksobionics.com), which went on to become a publicly-owned company in 2014 and now supplies medical exoskeleton (Ekso) to a great number of rehabilitation centers worldwide. He is the founder and chairperson of U.S. Bionics, a VC, industry, and government funded company that provides accessible, affordable exoskeletons for the industrial, medical, and military markets (www.usbionics.com).
Dr. Kazerooni has won numerous awards including Discover Magazine’s Technological Innovation Award, the McKnight-Land Grant Professorship, and has been a recipient of the outstanding ASME Investigator Award. His research was recognized as the most innovative technology of the year in New York Times Magazine. He has served in a variety of leadership roles in the mechanical engineering community and is notably the editor of two journals: ASME Journal of Dynamics Systems and Control and IEEE Transaction on Mechatronics. A recognized authority on robotics, Dr. Kazerooni has published more than 200 articles to date, delivered over 130 plenary lectures internationally, and is the inventors of numerous patents.
Research Description:
Bioengineering, robotics, control systems, mechatronics, design, automated manufacturing and human-machine systems
Key Publications:
To view a list of Professor Kazerooni’s publications, please visit the Berkeley Robotics & Human Engineering Laboratory’s website.
Grace X. Gu
Assistant Professor of Mechanical Engineering
6177 Etcheverry HallUniversity of California, Berkeley
Berkeley, CA 94720-1740
ggu@berkeley.edu
(510) 643-4996
For more information see: Gu Research Group
Current Classes Taught
Education:
PhD Mechanical Engineering, MIT, 2018
MS Mechanical Engineering, MIT, 2014
BS Mechanical Engineering, University of Michigan, 2012
Research Description:
Research interests: Composites, additive manufacturing, fracture mechanics, topology optimization, machine learning, finite element analysis, and bioinspired materials.
Key Publications:
GX Gu and MJ Buehler. Tunable mechanical properties through texture control of polycrystalline additively manufactured materials using adjoint-based gradient optimization. Acta Mechanica, 2018, Accepted
GX Gu, CT Chen, and MJ Buehler. De novo composite design based on machine learning algorithm. Extreme Mechanics Letters, 18:19-28, 2018
GX Gu, M Takaffoli, and MJ Buehler. Hierarchically enhanced impact resistance of bioinspired composites. Advanced Materials, 29 (28), 2017
GX Gu, S Wettermark, and MJ Buehler. Algorithm driven design of fracture resistant composite materials realized through additive manufacturing. Additive Manufacturing, 17:47-54, 2017
GX Gu, F Libonati, S Wettermark, and MJ. Buehler. Printing nature: Unraveling the role of nacre’s mineral bridges. Journal of the Mechanical Behavior of Biomedical Materials, 76:135-144, 2017
To view a complete list of Professor Gu’s publications, please visit the Gu Research Group website.
David M. Auslander
Professor of the Graduate School
Professor of the Graduate School
5120 Etcheverry HallUniversity of California, Berkeley
Berkeley, CA 94720-1740
dma@me.berkeley.edu
(510) 642-4930
For more information see: Current Classes Taught
Research Description:
Automatic control system design, mini-microcomputer system bioengineering, modeling and simulation of dynamic systems, process control.